Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract U-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) has the potential to be the most precise and accurate of the deep time chronometers, especially when applied to high-U minerals such as zircon. Continued analytical improvements have made this technique capable of regularly achieving better than 0.1% precision and accuracy of dates from commonly occurring high-U minerals across a wide range of geological ages and settings. To help maximize the long-term utility of published results, we present and discuss some recommendations for reporting ID-TIMS U-Pb geochronological data and associated metadata in accordance with accepted principles of data management. Further, given that the accuracy of reported ages typically depends on the interpretation applied to a set of individual dates, we discuss strategies for data interpretation. We anticipate that this paper will serve as an instructive guide for geologists who are publishing ID-TIMS U-Pb data, for laboratories generating the data, the wider geoscience community who use such data, and also editors of journals who wish to be informed about community standards. Combined, our recommendations should increase the utility, veracity, versatility, and “half-life” of ID-TIMS U-Pb geochronological data.more » « less
-
Abstract This study addresses the question of how and where arc magmas obtain their chemical and isotopic characteristics. The Wooley Creek batholith and Slinkard pluton are a tilted, mid- to upper-crustal part of a vertically extensive, late-Jurassic, arc-related magmatic system in the Klamath Mountains, northern California. The main stage of the system is divided into an older lower zone (c. 159 Ma) emplaced as multiple sheet-like bodies, a younger upper zone (c. 158–156 Ma), which is gradationally zoned upward from mafic tonalite to granite, and a complex central zone, which represents the transition between the lower and upper zones. Xenoliths are common and locally abundant in the lower and central zones and preserve a ghost stratigraphy of the three host terranes. Bulk-rock Nd isotope data along with ages and Hf and oxygen isotope data on zircons were used to assess the location and timing of differentiation and assimilation. Xenoliths display a wide range of εNd (whole-rock) and εHf (zircon), ranges that correlate with rocks in the host terranes. Among individual pluton samples, zircon Hf and oxygen isotope data display ranges too large to represent uniform magma compositions, and very few data are consistent with uncontaminated mantle-derived magma. In addition, zoning of Zr and Hf in augite and hornblende indicates that zircon crystallized at temperatures near or below 800 °C; these temperatures are lower than emplacement temperatures. Therefore, the diversity of zircon isotope compositions reflects in situ crystallization from heterogeneous magmas. On the basis of these and published data, the system is interpreted to reflect initial MASH-zone differentiation, which resulted in elevated δ18O and lowered εHf in the magmas prior to zircon crystallization. Further differentiation, and particularly assimilation–fractional crystallization, occurred at the level of emplacement on a piecemeal (local) basis as individual magma batches interacted with partial melts from host-rock xenoliths. This piecemeal assimilation was accompanied by zircon crystallization, resulting in the heterogeneous isotopic signatures. Magmatism ended with late-stage emplacement of isotopically evolved granitic magmas (c. 156 Ma) whose compositions primarily reflect reworking of the deep-crustal MASH environment.more » « less
An official website of the United States government
